FORMULA CHART for Grade 10 Science Assessment

Density = $\frac{\text{mass}}{\text{volume}}$	$D = \frac{m}{v}$
$\begin{pmatrix} heat gained or \\ lost by water \end{pmatrix} = \begin{pmatrix} mass in \\ grams \end{pmatrix} \begin{pmatrix} change in \\ temperature \end{pmatrix} \begin{pmatrix} specific \\ heat \end{pmatrix}$	$Q = (m)(\Delta T)(C_p)$
Speed = $\frac{\text{distance}}{\text{time}}$	$s = \frac{d}{t}$
$Acceleration = \frac{\text{final velocity} - \text{initial velocity}}{\text{change in time}}$	$a = \frac{v_{\rm f} - v_{\rm i}}{\Delta t}$
Momentum = mass \times velocity	p = mv
Force = mass \times acceleration	F = ma
Work = force × distance	W = Fd
$Power = \frac{work}{time}$	$P = \frac{W}{t}$
% efficiency = $\frac{\text{work output}}{\text{work input}} \times 100$	$\% = \frac{W_{\rm O}}{W_{\rm I}} \times 100$
Kinetic energy = $\frac{1}{2}$ (mass × velocity ²)	$KE = \frac{mv^2}{2}$
Gravitational potential energy = mass \times acceleration due to gravity \times height	GPE = mgh
Energy = mass \times (speed of light) ²	$E = mc^2$
Velocity of a wave = frequency \times wavelength	$v = f\lambda$
$Current = \frac{voltage}{resistance}$	$I = \frac{V}{R}$
Electrical power = voltage × current	P = VI
Electrical energy = power \times time	E = Pt

Constants/Conversions		
$g = \operatorname{acce}$	leration due to gravity =	9.8 m/s ²
<i>c</i> =	speed of light = 3×10^8 r	n/s
speed of sound = 343 m/s at 20°C		
	$1 \text{ cm}^3 = 1 \text{ mL}$	
1	wave/second = 1 hertz (H	z)
1 calorie (cal) = 4.18 joules		
1000 calories (cal) = 1 Calorie (Cal) = 1 kilocalorie (kcal)		
newton (N) = kgm/s 2		
	joule (J) = Nm	
watt (W) = $J/s = Nm/s$		
volt (V)	ampere (A)	ohm (Ω)

Page 107

Centimeters