12

FORMULA CHART for Grade 11 Science Assessment

$Density = \frac{mass}{volume}$	$D = \frac{m}{v}$
$\begin{pmatrix} \text{heat gained or} \\ \text{lost by water} \end{pmatrix} = \begin{pmatrix} \text{mass in} \\ \text{grams} \end{pmatrix} \begin{pmatrix} \text{change in} \\ \text{temperature} \end{pmatrix} \begin{pmatrix} \text{specific} \\ \text{heat} \end{pmatrix}$	$Q = (m)(\Delta T)(C_p)$
$Speed = \frac{distance}{time}$	$s = \frac{d}{t}$
$Acceleration = \frac{\text{final velocity} - \text{initial velocity}}{\text{change in time}}$	$a = \frac{v_{\rm f} - v_{\rm i}}{\Delta t}$
$Momentum = mass \times velocity$	p = mv
Force = $mass \times acceleration$	F = ma
$Work = force \times distance$	W = Fd
$Power = \frac{work}{time}$	$P = \frac{W}{t}$
$\%$ efficiency = $\frac{\text{work output}}{\text{work input}} \times 100$	$\% = \frac{W_{\rm O}}{W_{\rm I}} \times 100$
Kinetic energy = $\frac{1}{2}$ (mass × velocity ²)	$KE = \frac{mv^2}{2}$
Gravitational potential energy = mass \times acceleration due to gravity \times height $GPE = mgh$	
Energy = mass \times (speed of light) ²	$E = mc^2$
Velocity of a wave = frequency \times wavelength	$v = f\lambda$
$Current = \frac{voltage}{resistance}$	$I = \frac{V}{R}$
Electrical power = voltage \times current	P = VI
Electrical energy = power \times time	E = Pt

Constants/Conversions		
g = acce	leration due to gravity =	9.8 m/s ²
c =	$c = \text{speed of light} = 3 \times 10^8 \text{ m/s}$	
speed of sound = 343 m/s at 20 °C		
$1 \text{ cm}^3 = 1 \text{ mL}$		
1 wave/second = 1 hertz (Hz)		
1 calorie (cal) = 4.18 joules		
1000 calories (cal) = 1 Calorie (Cal) = 1 kilocalorie (kcal)		
newton (N) = $kg m/s^2$		
joule (J) = Nm		
watt $(W) = J/s = Nm/s$		
volt (V)	ampere (A)	ohm (Ω)