FORMULA CHART
 for Grade 11 Science Assessment

Density $=\frac{\text { mass }}{\text { volume }}$	$D=\frac{m}{v}$
$\binom{$ heat gained or }{ lost by water }$=\binom{$ mass in }{ grams }$\binom{$ change in }{ temperature }$\binom{$ specific }{ heat }	$Q=(m)(\Delta T)\left(C_{p}\right)$
Speed $=\frac{\text { distance }}{\text { time }}$	$s=\frac{d}{t}$
Acceleration $=\frac{\text { final velocity }- \text { initial velocity }}{\text { change in time }}$	$a=\frac{v_{f}-v_{\mathrm{i}}}{\Delta t}$
Momentum $=$ mass \times velocity	$p=m v$
Force $=$ mass \times acceleration	$F=m a$
Work $=$ force \times distance	$W=\frac{W}{t}$
Power $=\frac{\text { work }}{\text { time }}$	$\%=\frac{W_{0}}{W_{\mathrm{I}}} \times 100$
$\%$ efficiency $=\frac{\text { work output }}{\text { work input } \times 100}$	$K E=\frac{m v^{2}}{2}$
Kinetic energy $=\frac{1}{2}\left(\right.$ mass \times velocity $\left.{ }^{2}\right)$	$G P E=m g h$
Gravitational potential energy $=$ mass \times acceleration due to gravity \times height	$E=m c^{2}$
Energy $=$ mass $\times(\text { speed of light })^{2}$	$v=f \lambda$
Velocity of a wave $=$ frequency \times wavelength	$I=\frac{V}{R}$
Current $=\frac{\text { voltage }}{\text { resistance }}$	$P=V I$
Electrical power $=$ voltage \times current	$E=P t$
Electrical energy $=$ power \times time	F

Constants/Conversions
$g=$ acceleration due to gravity $=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$c=$ speed of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
speed of sound $=343 \mathrm{~m} / \mathrm{s}$ at $20^{\circ} \mathrm{C}$
$1 \mathrm{~cm}{ }^{3}=1 \mathrm{~mL}$
1 wave/second $=1$ hertz (Hz)
1 calorie $($ cal $)=4.18$ joules
1000 calories $($ cal $)=1$ Calorie $(\mathrm{Cal})=1$ kilocalorie (kcal)
newton $(\mathrm{N})=\mathrm{kgm} / \mathrm{s}^{2}$
joule $(\mathrm{J})=\mathrm{Nm}$
watt $(\mathrm{W})=\mathrm{J} / \mathrm{s}=\mathrm{Nm} / \mathrm{s}$
ampere (A)
volt $(\mathrm{V}) \quad$ ohm (Ω)

